

191AA03 – Socle métamorphique dans les bassins versants côtiers de l'Aber Wrac'h (c) à l'Aber Benoit (c)

Fiche descriptive de l'entité :

Thème	socle				
État hydrodynamique	nappe libre				
Milieu	fissuré				
Nature	44.3% aquifère / 40.7% semi-perméable				
Lithologies principales	granite, gneiss				
Superficie	374 km²				
Département(s)	Finistère (29)				
Niveau(x) de recouvrement (ordres)	1				
Masse d'eau souterraine recoupée	4001 (Léon)				
Correspondance SAGE	inclus dans le SAGE Bas-Léon				
Cartes géologiques 1/50 000	238, 239, 200				

GEOLOGIE et HYDROGEOLOGIE

Ce secteur du Finistère Nord fut un site-pilote lors de la caractérisation des aquifères de socle, contenus dans les niveaux d'altération à la fin des années 1990 (Thomas, 1999). Les bassins versants des fleuves côtiers situés entre les Abers Wrac'h et Benoit appartiennent au Domaine varisque du Pays de Léon, constitué de :

- (1) l'Unité du Conquet, composée de micaschistes et paragneiss des Formations du Conquet et de la Penzé ;
- (2) l'Unité de Lesneven, composée de gneiss para- et ortho-dérivés et de massifs granitiques et orthogneissiques (Massif de Plouescat-Brignogan et Massifs de Tréglonou et de Plounévez) et du Massif de Kersaint.

Pour accéder à une carte géologique plus détaillée, consultez l'espace cartographique.

Le réseau hydrographique ne semble pas subir une influence particulière des structures tectoniques mais plutôt suivre la topographie pour aboutir aux abers respectifs.

Ces formations géologiques dites « de socle » contiennent une nappe dans deux niveaux superposés et connectés : les altérites (roche altérée en sables ou argiles) et la roche fissurée. Ils sont interdépendants mais ils n'ont pas les mêmes caractéristiques hydrodynamiques : la roche altérée est plutôt argileuse et capacitive, et l'horizon fissuré est plus transmissif.

Une étude réalisée sur le bassin versant de Plabennec (Wyns et al., 2004) a permis de caractériser les teneurs en eau de ces aquifères (altérites et horizon fissuré). Les résultats, issus de l'interprétation de 12 sondages de Résonance Magnétique Protonique (RMP), sont rassemblés dans ce tableau (Figure 3) :

Géologie	Altérite %	Fissuré %	Nb sondages RMP
Granite de Kersaint grossier	4.64	4.88	5
Orthogneiss de Plouénan	3.42	4.28	2
Paragneiss à biotite-sillimanite	1.29	5.71	5
Moyenne	3.12	4.96	

Figure 3 : Détermination des teneurs en eau moyenne pour chaque horizon d'altération de chaque formation géologique de l'entité

Un forage recoupant l'ensemble du profil d'altération des gneiss (lithologie présente sur la partie Nord de l'entité) est susceptible de fournir un débit de 17 m³/h au soufflage.

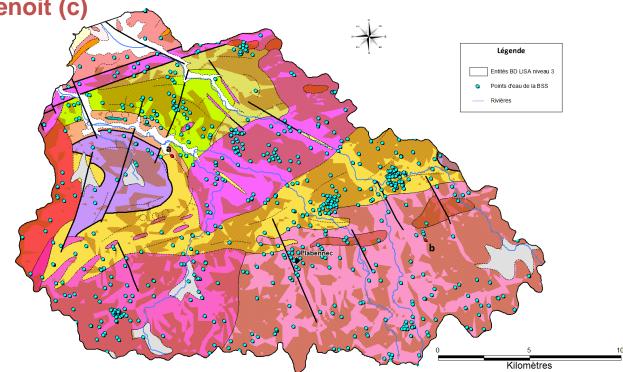


Figure 1 : Carte géologique au 1/250 000 et points d'eau de la Banque du Sous-Sol (BSS)

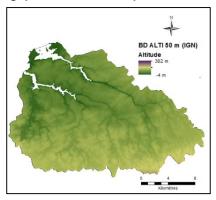


Figure 2 : Relief (BD ALTI 50 m IGN)

Profondeur	Formation	Lithologie	Lithologie	Stratigraphie	Altitude	Profondeur	Formation	Lithologie	-	Stratigraphie	Altitude
6.00 -			Sable jaune (allotérite).		- 26.00 -						
	Gneiss migmatitiques de l'Aber Benoît		Arène jaune souple (horizon feuilleté).	Paléoprotérozolque à Paléozolque		- 9.00 ·	Granite de Kersaint	+++++++++++++++++++++++++++++++++++++++	Granite jaune fracturé	Carbonifère inférieur	- 68.00 - 47.00
38.00 -		**************************************	Gneiss migmatitique décrit comme	Néoprotérozolque	-6.00 -			+ + + + + + + + + + + + + + + + + + + +	Granite gris		
50.00		* * * * * * * * * * * * * * * * * * *	granite gris souple.	resuproterozoique	-10.00	61:00		+ + + + + + + + + + + + +			16.00

Figure 4 : Coupes géologiques des forages en rouge sur la Figure 1 a- code BSS 02382X0060/F - Plouvien (29) b- code BSS 02384X0168/F - Ploudaniel (29)

Agricole

Géothermie

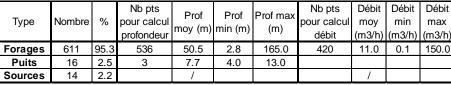
■Industrielle

Irrigation

Suivi qualité ■Piézomètre

 Alimentation Eau Potable (AFP) ■ Domestique

191AA03 – Socle métamorphique dans les bassins versants côtiers de l'Aber Wrac'h (c) à l'Aber Benoit (c)


CAPTAGES D'EAU SOUTERRAINE

Les points d'eau, recensés en 2011 sur l'entité, sont nombreux (Figure 5) : ce sont principalement des forages traversant les deux niveaux (altérites et roche fissurée) et des puits fermiers captant l'eau des altérites. Les puits peu profonds sont sensibles aux variations climatiques. L'eau captée, proche du sol, est particulièrement vulnérable aux pollutions accidentelles ou diffuses. L'usage de ces points d'eau est détaillé sur la Figure 6.

Les aquifères des roches fissurées bénéficient d'une inertie notable les mettant à l'abri des variations climatiques. Ils sont souvent le siège de phénomènes de dénitrification (réduction des nitrates par l'oxydation de la pyrite - sulfure de fer FeS₂) à l'origine d'abattements très significatifs des concentrations en nitrates dans les cours d'eau. C'est sur la commune de Ploudaniel que ce phénomène de dénitrification a été découvert pour la première fois (Talbo et al. 1988). Les forages peuvent exploiter cette eau dénitrifiée qui est alors riche en fer et en sulfates.

17 ouvrages (9 forages, 5 puits et 3 sources) sont exploités pour l'adduction d'eau potable sur l'entité. Ils sont implantés sur 13 communes différentes et recoupent les formations de socle.

	Туре	Nombre	%	Nb pts pour calcul profondeur	Prof moy (m)	-	Prof max (m)	pour calcul	- ,	Débit min (m3/h)	Débit max (m3/h)
ĺ	Forages	611	95.3	536	50.5	2.8	165.0	420	11.0	0.1	150.0
	Puits	16	2.5	3	7.7	4.0	13.0				
	Sources	14	2.2		/		_		/		

Figure 5 : Caractéristiques des 641 points d'eau de l'entité

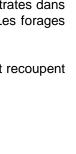


Figure 6 : Utilisation des points d'eau de l'entité

Utilisation déclarée de l'eau souterraine

(calcul sur 422 ouvrages)

QUALITE DE L'EAU SOUTERRAINE

2 ouvrages sont suivis par l'Agence de l'Eau Loire-Bretagne (AELB) dans le cadre du réseau de mesure de la qualité des eaux souterraines (Figure 11) :

- Saint-Pabu code BSS: 02381X0006/PE
- Milizac code BSS: 02386X0065/S3

Malgré les fortes teneurs en nitrates des eaux souterraines, une tendance à la baisse (- 2,9 mg/L/an) a été constatée entre 1998 et 2007, sur le bassin versant de l'Aber Wrac'h (Mougin et al., 2007).

CODE BSS	DEPT	COMMUNE	NATURE	PROF (m)	DATE	T (°C)	Cond. (μS/cm)	рН	CI (Chlorures)	Fe (Fer)	Mn (Manganèse)	NH4 (Ammonium exprimé en NH4)	NO2 (Nitrites exprimés en NO2)	NO3 (Nitrates exprimés en NO3)	SO4 (Sulfates)	Source des données	
									mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l		Į
02381X0006	29	SAINT-PABU	FORAGE		21/10/2010	12.7	371	6.35	50			< 0.05	< 0.01	51	37	AELB	<u>Lien ADES</u>
02381X0035	29	PLOUGUIN	PUITS		28/04/2009	11.8	359	6.10	37	0.013	< 0.01	< 0.05	< 0.01	62	37	ARS	<u>Lien ADES</u>
02382X0049	29	LANDEDA	PUITS		09/02/2006	12.5	501	6.00	57.3	< 0.01	< 0.002	0.01	< 0.01	79	50.1	ARS	<u>Lien ADES</u>
02384X0079	29	PLOUDANIEL	FORAGE	145	01/08/2007				824	1.86		0.2	< 0.01	< 0.5	273.4	BRGM]
02384X0108	29	PLOUDANIEL	FORAGE	71	01/08/2007				64.7	2.47		< 0.1	0.12	3.6	110.1	BRGM]
02386X0065	29	MILIZAC	FORAGE	109	21/10/2010	11.9	242	4.80	32			< 0.05	< 0.01	69	25	AELB	<u>Lien ADES</u>
02388X0019	29	PLOUDANIEL	FORAGE	23	03/08/2007				29.9	< 0.02		< 0.5	< 0.01	80.9	27.1	BRGM	
02388X0106	29	SAINT-THONAN	FORAGE		12/02/2009	9	245	5.80	25.3	0.012	0.015	< 0.01	< 0.01	44	23.8	ARS	<u>Lien ADES</u>
02391X0006	29	PLOUDANIEL	FORAGE	20	03/08/2007				29.3	0.04		< 0.4	< 0.01	121.8	25.7	BRGM	
02395X0054	29	SAINT-THONAN	FORAGE	32	02/08/2007				37.1	0.04		< 0.3	< 0.01	120.5	29	BRGM	
02395X0057	29	PLOUEDERN	FORAGE	53	02/08/2007				24.3	0.43		< 0.2	< 0.01	23.9	52.6	BRGM]

Figure 7 : Tableau de quelques analyses chimiques disponibles sur des points d'eau de l'entité (inventaire non exhaustif)

SYNTHESE DES PRELEVEMENTS SOUTERRAINS

Selon un bilan réalisé à partir des données 2009 sur les bassins versants côtiers de l'Aber Wrac'h à l'Aber Benoit, les prélèvements anthropiques d'eau souterraine déclarés représentent 1,5 % de la lame d'eau présente dans le cours d'eau. En période d'étiage, ils peuvent constituer jusqu'à 9 % de la lame d'eau écoulée. D'autre part, les prélèvements souterrains correspondent à 3,3 % de la pluie infiltrée annuellement sur le bassin versant.

L'impact des prélèvements anthropiques souterrains déclarés sur le débit des rivières semble donc négligeable.

A noter : les prélèvements d'eau de surface n'ont pas été pris en compte dans ce bilan.

Utilisation des ouvrages	Prélèvements eau souterraine (m3/an) *	Part des usages en %
ALIMENTATION EN EAU POTABLE (AEP)	1 724 117	55,2%
INDUSTRIEL	658 062	21,1%
IRRIGATION	122 825	3,9%
ÉLEVAGE	522 406	16,7%
DOMESTIQUE (usage familial)	36 870	1,2%
AUTRES (autre sans usage alimentaire,		
géothermie, lavage,)	61 900	2,0%
TOTAL	3 126 180	100%

Figure 8 : Estimation des prélèvements en eau souterraine sur les bassins versants côtiers de l'Aber Wrac 'h à l'Aber Benoit (2009)

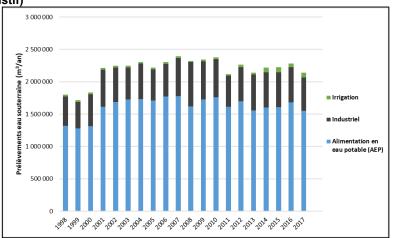
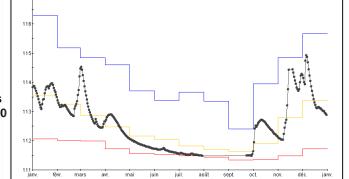


Figure 9 : Evolution des prélèvements en eau souterraine sur l'entité entre 1998 et 2015 (données AELB)

Il s'agit de calculs associés à un certain nombre d'incertitudes (voir l'article <u>Inventaire des prélèvements d'eau souterraine</u> pour plus de précisions)


191AA03 – Socle métamorphique dans les bassins versants côtiers de l'Aber Wrac'h (c) à l'Aber Benoit (c)

SUIVI PIEZOMETRIQUE

Un piézomètre implanté dans les granites est suivi sur l'entité. Code BSS : 02388X0060/F1, piézomètre de Pen-Ar-Forest (Saint-Divy).

La profondeur de la nappe varie entre 3.8 et 8.8 m, le battement moyen annuel est de 3.3 m (période 1994-2010).

Figure 10 : Chronique piézométrique 2010 (cote en m NGF) et comparaison aux valeurs min/max et moyennes de la période 1994-2010

Chronique piézométrique (ADES)

RELATION NAPPES-RIVIERES

Le projet SILURES Bretagne (Mougin et al., 2004) montre que la contribution des eaux souterraines au régime de l'Aber Wrac'h (bassin versant à l'amont de la station hydrologique J3205710 au Drennec) s'élève à 56,5 % de l'écoulement total. Ceci témoigne d'une assez bonne contribution des eaux souterraines.

En étiage, on note une influence prépondérante du réservoir souterrain inférieur (fissuré), par rapport au réservoir supérieur (altéré). De mai à septembre, plus de 79% de l'écoulement de l'Aber Wrac'h provient de l'écoulement souterrain, avec un paroxysme en août et septembre où la totalité de l'écoulement de ces cours d'eau provient de l'écoulement souterrain (soutien de l'écoulement de la rivière par la nappe).

La tendance s'inverse pour les autres mois de l'année. Pendant la période de crue (décembre-janvier), la contribution des eaux souterraines à l'alimentation des rivières diminue vers 37 et 43 %.

Rivière	Dépt	Station hydrologique	Numéro station	Superficie BV (km²)	Période modélisation	Pluie totale (mm/an)	Evapo- transpiration réelle (mm/an)	Pluie efficace (mm/an)
Aber Wrac'h	29	Drennec	J3205710	24	1989-2000	1144	574	570
					Ecoulement rapide (mm/an)	Ecoulement rapide	Ecoulement lent (mm/an)	Ecoulement lent
				•	248.5	43.5%	321.5	56.5%

Le graphique de comparaison des données climatiques (pluies efficaces calculées à la station météorologique de Brest-Guipaves avec une réserve utile de 25 mm), hydrologiques (l'Aber Benoit à Plabennec [Loc Maria]) et piézométriques (Saint-Divy) montre que la nappe suit un battement annuel (recharge-décharge) et qu'elle est très réactive aux précipitations.

Les pics hydrologiques et piézométriques ne sont pas synchrones (décalage de 5-10 jours), ce qui indique que le milieu souterrain est assez inertiel (écoulements lents).

On note cependant des relations étroites entre le cours d'eau (Aber Benoit) et la nappe.

REFERENCES BIBLIOGRAPHIQUES

MOUGIN B., CARN A., DEBEGLIA N., PERRIN J. et THOMAS E. avec la collaboration de JEGOU J-P. (2004) - SILURES Bretagne - Rapport d'avancement de l'année 2 - BRGM/RP-52825-FR - 62 p., 15 tabl., 23 fig., 3 ann.

MOUGIN B., ALLIER D., PUTOT E., SEGUIN J-J., SCHROETTER J-M., BLANCHIN R., collaboration: IZAC J-L., JEGOU J-P. (2007) - Bassins versants bretons en contentieux européen: typologie et modélisation de l'évolution des concentrations en nitrates - Rapport d'avancement au 15 octobre - BRGM/RP-55842-FR – 123 p., 70 ill., 3 ann. dont 60 planches (vol. séparé)

TALBO.H., MARTIN.G. (1988). Rapport BRGM/88-SGN-584-BRE - ETUDE DU DEVENIR DES NITRATES EN PROFONDEUR SUR LE SITE DE LA COOPERATIVE DE PLOUDANIEL (29) - DENITRIFICATION NATURELLE EN SOUS-SOL

THOMAS E. (1999) – Evolution cénozoïque d'un domaine de socle : le Massif Armoricain. Thèse d'Université, Rennes 1, 126 p.

WYNS, R., BALTASSAT J.M., LACHASSAGNE P., LEGCHENKO A., VAIRON J. and MATHIEU F. (2004) - Application of proton magnetic resonance soundings for groundwater reserve mapping in weathered basement rocks (Brittany, France).- Bull. Soc. Géol. Fr., t. 175, n°1, pp. 21-34

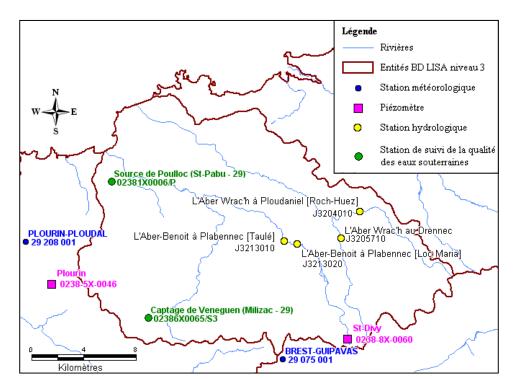


Figure 11 : Localisation des stations météorologiques, piézomètres, stations hydrologiques et points de suivi de la qualité des eaux souterraines sur l'entité

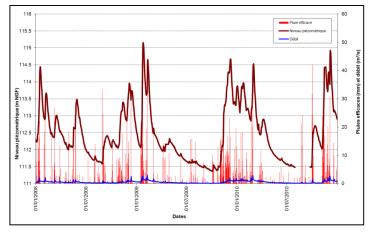
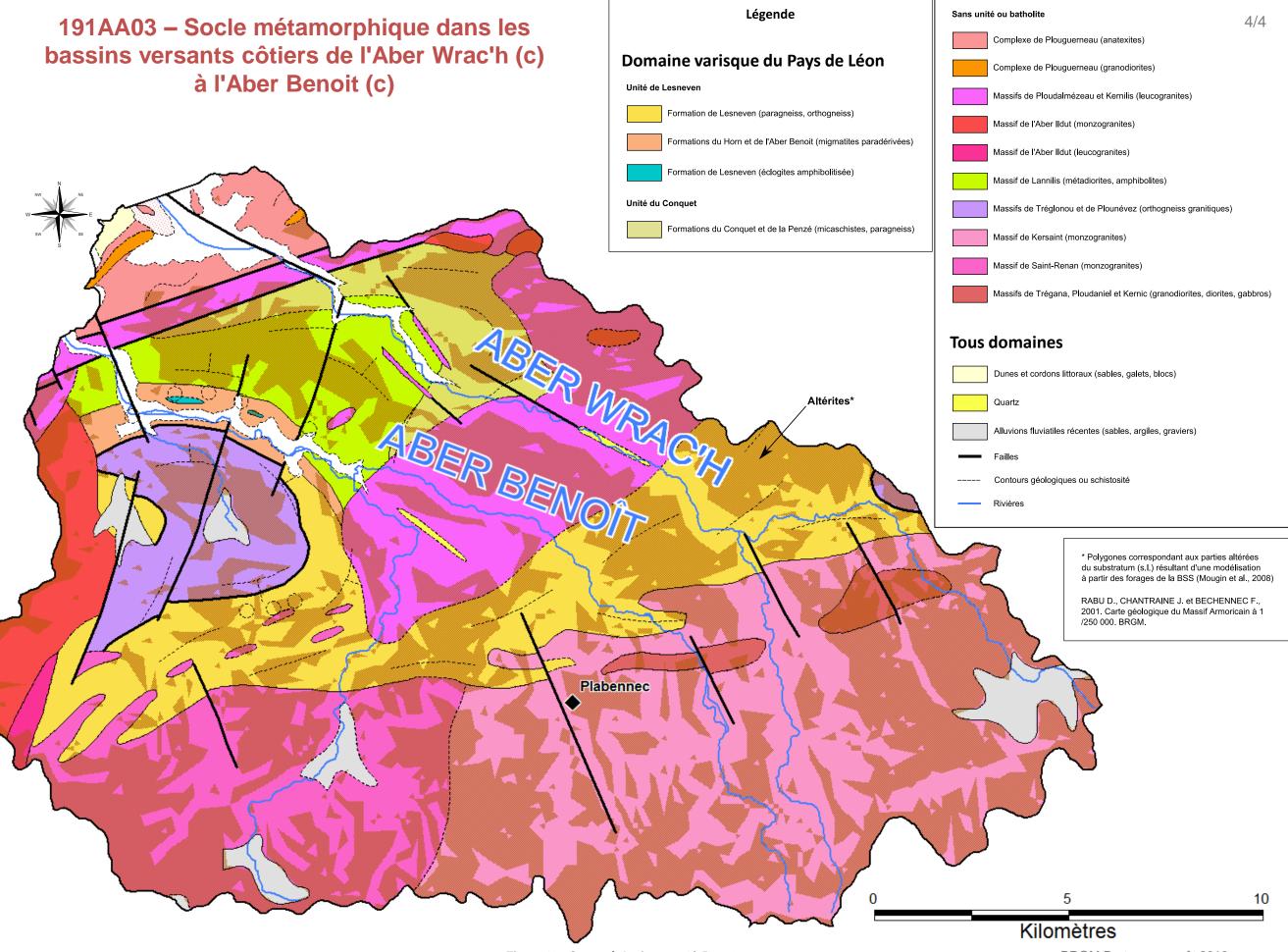



Figure 12 : Comparaison des données climatiques (pluie efficace à Brest-Guipavas), hydrologiques (l'Aber Benoit à Plabennec [Loc Maria]) et piézométriques (Saint-Divy)

